-[7z(14z+10)]=10+(6z+1)

Simple and best practice solution for -[7z(14z+10)]=10+(6z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -[7z(14z+10)]=10+(6z+1) equation:


Simplifying
-1[7z(14z + 10)] = 10 + (6z + 1)

Reorder the terms:
-1[7z(10 + 14z)] = 10 + (6z + 1)
-1[(10 * 7z + 14z * 7z)] = 10 + (6z + 1)
-1[(70z + 98z2)] = 10 + (6z + 1)
[70z * -1 + 98z2 * -1] = 10 + (6z + 1)
[-70z + -98z2] = 10 + (6z + 1)

Reorder the terms:
-70z + -98z2 = 10 + (1 + 6z)

Remove parenthesis around (1 + 6z)
-70z + -98z2 = 10 + 1 + 6z

Combine like terms: 10 + 1 = 11
-70z + -98z2 = 11 + 6z

Solving
-70z + -98z2 = 11 + 6z

Solving for variable 'z'.

Reorder the terms:
-11 + -70z + -6z + -98z2 = 11 + 6z + -11 + -6z

Combine like terms: -70z + -6z = -76z
-11 + -76z + -98z2 = 11 + 6z + -11 + -6z

Reorder the terms:
-11 + -76z + -98z2 = 11 + -11 + 6z + -6z

Combine like terms: 11 + -11 = 0
-11 + -76z + -98z2 = 0 + 6z + -6z
-11 + -76z + -98z2 = 6z + -6z

Combine like terms: 6z + -6z = 0
-11 + -76z + -98z2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(11 + 76z + 98z2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(11 + 76z + 98z2)' equal to zero and attempt to solve: Simplifying 11 + 76z + 98z2 = 0 Solving 11 + 76z + 98z2 = 0 Begin completing the square. Divide all terms by 98 the coefficient of the squared term: Divide each side by '98'. 0.112244898 + 0.7755102041z + z2 = 0 Move the constant term to the right: Add '-0.112244898' to each side of the equation. 0.112244898 + 0.7755102041z + -0.112244898 + z2 = 0 + -0.112244898 Reorder the terms: 0.112244898 + -0.112244898 + 0.7755102041z + z2 = 0 + -0.112244898 Combine like terms: 0.112244898 + -0.112244898 = 0.000000000 0.000000000 + 0.7755102041z + z2 = 0 + -0.112244898 0.7755102041z + z2 = 0 + -0.112244898 Combine like terms: 0 + -0.112244898 = -0.112244898 0.7755102041z + z2 = -0.112244898 The z term is 0.7755102041z. Take half its coefficient (0.3877551021). Square it (0.1503540192) and add it to both sides. Add '0.1503540192' to each side of the equation. 0.7755102041z + 0.1503540192 + z2 = -0.112244898 + 0.1503540192 Reorder the terms: 0.1503540192 + 0.7755102041z + z2 = -0.112244898 + 0.1503540192 Combine like terms: -0.112244898 + 0.1503540192 = 0.0381091212 0.1503540192 + 0.7755102041z + z2 = 0.0381091212 Factor a perfect square on the left side: (z + 0.3877551021)(z + 0.3877551021) = 0.0381091212 Calculate the square root of the right side: 0.195215576 Break this problem into two subproblems by setting (z + 0.3877551021) equal to 0.195215576 and -0.195215576.

Subproblem 1

z + 0.3877551021 = 0.195215576 Simplifying z + 0.3877551021 = 0.195215576 Reorder the terms: 0.3877551021 + z = 0.195215576 Solving 0.3877551021 + z = 0.195215576 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.3877551021' to each side of the equation. 0.3877551021 + -0.3877551021 + z = 0.195215576 + -0.3877551021 Combine like terms: 0.3877551021 + -0.3877551021 = 0.0000000000 0.0000000000 + z = 0.195215576 + -0.3877551021 z = 0.195215576 + -0.3877551021 Combine like terms: 0.195215576 + -0.3877551021 = -0.1925395261 z = -0.1925395261 Simplifying z = -0.1925395261

Subproblem 2

z + 0.3877551021 = -0.195215576 Simplifying z + 0.3877551021 = -0.195215576 Reorder the terms: 0.3877551021 + z = -0.195215576 Solving 0.3877551021 + z = -0.195215576 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.3877551021' to each side of the equation. 0.3877551021 + -0.3877551021 + z = -0.195215576 + -0.3877551021 Combine like terms: 0.3877551021 + -0.3877551021 = 0.0000000000 0.0000000000 + z = -0.195215576 + -0.3877551021 z = -0.195215576 + -0.3877551021 Combine like terms: -0.195215576 + -0.3877551021 = -0.5829706781 z = -0.5829706781 Simplifying z = -0.5829706781

Solution

The solution to the problem is based on the solutions from the subproblems. z = {-0.1925395261, -0.5829706781}

Solution

z = {-0.1925395261, -0.5829706781}

See similar equations:

| 72=-3h+6h | | 9P+7-4P=-6P-12 | | m+24=155 | | -6x+9y=25 | | 20-4=6x-3x+7-3+x | | -7x-7=5x+5 | | -(62+x)=-248 | | n-3+2=24 | | g(x)=-1/4x^2-13 | | 3-3(x-4)=-3-2(5-x) | | 10-(2y+5)=2y-5 | | -4(v+2)+2v+7=7v+12 | | f(x)=-x^2-48 | | -(-x+18)= | | 8x+7=-3(5x-4) | | y*2+9y*2= | | m-15=3(m-4)-2m | | 617=25k-8 | | 9(p-8)=18 | | 3m+2m=8 | | x-1+15=x-1+9 | | -x+8y=-32 | | 5(x-3)+8=7x-10 | | 4-4x=-3x | | 18(k+12)=936 | | 2x+3x+3x+32=360 | | 14(x+30)=-196 | | v/9-5=(-6) | | z2=9/16 | | 19=-9(8c-3) | | 7v+1+6v= | | 2g+2g-4=43 |

Equations solver categories